
ECE 4100 Project 3 Report

Multi-Processor Cache Coherence

Ruoyang Xu

Last Edited: April 19, 2019

Introduction

This is the report for ECE 4100 Advanced Computer Architecture Project 3: Cache Coherence. The
simulator will implement four protocols on a bus-based broadcast system to ensure cache coherence across
different processor caches: MSI, MOSI, MESI, MOESIF.

The simulations would be conducted on 4, 8 and 16 core system. Each core in the system has one level
of cache. This cache is associative and of infinite size. The protocols will be tested on 8 test environment
settings.

Individual Trace Experiment

This section investigates the best protocol for each experiment.

Experiment 1

The result for each configuration is shown in Table 1. Experiment 1 is a 4-processor trace where each
processor only has 3 memory requests. Shown in the table, MOESIF and MOSI protocols performs
better than MSI and MESI. This is largely due to the fact that MOESIF and MOSI were able to provide
cache-to-cache transfer even when data is being modified. This has led to the elimination of one less
100-cycle response from memory and produce a smaller runtime.

The recommended protocol would be MOSI since MOESIF and MOSI have the same performance and
it is easier to implement MOSI than MOESIF.

Table 1: Experiment 1 Result

MSI MOSI MESI MOESIF

Runtime 317 217 317 217
Cache Miss 7 7 7 7

Cache Access 12 12 12 12
Silent Upgrade 0 0 0 0
$-to-$ Transfer 4 5 4 5

Experiment 2

The result for each configuration is shown in Table 2. Experiment 2 is a 4-processor where the majority
of the requests are read and the few writes are concentrated around a number of times. This has led to
the fact that the ability to share on top of modified data really valuable. MOSI and MOESIF again were
able to provide more cache to cache transfer and save more time.

The recommended protocol would be MOESIF. Because it has the lowest runtime and the second best
option is not fast enough to amend for decreased complexity.

Table 2: Experiment 2 Result

MSI MOSI MESI MOESIF

Runtime 2367 1167 2367 987
Cache Miss 30 30 30 30

Cache Access 104 104 104 104
Silent Upgrade 0 0 1 1
$-to-$ Transfer 7 19 7 24

2

Experiment 3

The result for each configuration is shown in Table 3. Experiment 3 is a 8-processor simulation that
every four cores operates around a similar range of memory location. Processors has intense read and
write operations yet rarely share the same memory location. This has cause the Exclusive state to be
very useful thus the outstanding performance of MESI and MOESIF.

The optimal configuration is MOESIF, given that it takes the minimal runtime and is 1.685 times faster
than the second best.

Table 3: Experiment 3 Result

MSI MOSI MESI MOESIF

Runtime 3723 3723 2907 1725
Cache Miss 56 56 48 48

Cache Access 200 200 200 200
Silent Upgrade 0 0 8 8
$-to-$ Transfer 20 20 20 32

Experiment 4

The result for each configuration is shown in Table 4. Experiment 4 is a 4-processor simulation where
one core writes and reads to memory locations and all three other cores have identical memory access
traces and only do read operations. Since there is write operation to memory locations, both Owned and
Exclusive state would be very useful thus MOESIF, the combination of both would be even more optimal
than MOSI and MESI. MOESIF is undoubtedly the best configuration since it has the smallest number
of cache miss and largest number of cache-to-cache transfer, leading to minimal runtime.

Table 4: Experiment 4 Result

MSI MOSI MESI MOESIF

Runtime 2265 1869 1647 751
Cache Miss 27 29 19 19

Cache Access 60 60 60 60
Silent Upgrade 0 0 3 3
$-to-$ Transfer 5 11 3 12

Experiment 5

The result for each configuration is shown in Table 5. Experiment 5 is a 8-processor simulation. Processors
compete around memory location 0x000BEEF0 while other memory locations are not really shared-
accessed. The same location being accessed by all defeats the purpose of an Exclusive state and it is
quite apparent that MESI have the exact same performance as MSI. MOESIF wins over MOSI by having
a Forward State and providing more cache-to-cache transfer.

3

Table 5: Experiment 5 Result

MSI MOSI MESI MOESIF

Runtime 1661 1261 1661 561
Cache Miss 21 21 21 21

Cache Access 37 37 37 37
Silent Upgrade 0 0 0 0
$-to-$ Transfer 5 9 5 16

Experiment 6

The result for each configuration is shown in Table 6. Experiment 6 is a 16-processor simulation. 8
cores are only reading memory addresses and four of the eight reads 0x5000000 for 70+ times. The rest
four of eight writes to memory locations that is only read by itself. Of the remaining 8 cores, four cores
does the exact same operation and only reads, leaving the last four competing cache coherece aroudn
0x000BEEF0. This is a similar scenario with experiment 5 and MOESIF undoubtedly wins.

Table 6: Experiment 6 Result

MSI MOSI MESI MOESIF

Runtime 7775 6975 5225 3425
Cache Miss 87 87 62 62

Cache Access 747 747 747 747
Silent Upgrade 0 0 25 25
$-to-$ Transfer 12 20 12 30

Experiment 7

The result for each configuration is shown in Table 7. Experiment 7 is a 16-processor simulation with
four processor cores doing intense read and write operation to the exact same memory address. There’s
another four cores doing read mixed with write operation to the same address. Four of the remaining
cores solely conducts read operation and the last four does read and write operation to similar yet non-
conflicting memory addresses.

The intense intermittent r/w operation would cause both Exclusive and Owned state to underperform,
since they would quickly become invalid. A combination of both is the better solution and MOESIF
again outperforms everyone.

Table 7: Experiment 7 Result

MSI MOSI MESI MOESIF

Runtime 6459 5359 3993 2909
Cache Miss 79 79 55 55

Cache Access 952 952 952 952
Silent Upgrade 0 0 24 24
$-to-$ Transfer 17 28 17 28

Experiment 8

The result for each configuration is shown in Table 8. Experiment 8 is a 16-processor simulation with
mixed operations. Having both Owned state and Exclusive State helps reducing the number of queries
to the memory, but having both, MOESIF is definitely the best in terms of runtime.

4

Table 8: Experiment 8 Result

MSI MOSI MESI MOESIF

Runtime 9477 8477 7139 4939
Cache Miss 110 110 91 91

Cache Access 800 800 800 800
Silent Upgrade 0 0 19 19
$-to-$ Transfer 18 28 22 44

System Architecture Experiment

To architect a system where all the provided programs were equally important, I would choose MOESIF
as the protocol in the system. This is because MOESIF yields the smallest runtime across all processor
count and traces. It also outperforms the second place by a non-negligible margin. There is simply no
reason to not choose it as the protocol for the system.

Limitation to the Simulator

The cache coherence simulator made certain assumptions that are unlikely in real world and may affect
actual performance. There is a rather low possibility for a real world computer to have a fully associative
and infinite size L1 cache. Having no eviction renders certain protocol less effective than they actually
are. To equip the simulator with cache eviction would increase the number of cache share requests and is
likely to cause performance change. Furthermore, there is usually than one level of cache in CPU cores,
adding this hiearchy of cache can make this even more realistic.

The simulator limits the number of memory requests onto the bus. This limits the number of load/store
FU to be only one, which is probably not the case in superscalar processor model.

Furthermore, the traces appears to have causality between different cores that is not modeled by this
simulator. Experiment 2 p0 and p1 read and write along the same cache addresses, which could imply the
cores are doing vectorized array access or queue access. In some of those situations, read write operation
order across different cores need to be maintained and this simulator does not seem to be modeling this
causality. Having the order modeled can cause difference in performance and is considered a limitation
to this simulator.

5

